High relatedness selects against hypermutability in bacterial metapopulations.
نویسندگان
چکیده
Mutation rate and cooperation have important ecological and evolutionary consequences and, moreover, can affect pathogen virulence. While hypermutability accelerates adaptation to novel environments, hypermutable lineages ('mutators') are selected against in well-adapted populations. Using the model organism Pseudomonas aeruginosa, we previously demonstrated a further potential disadvantage to hypermutability, namely, that it can accelerate the breakdown of cooperation. We now investigate how this property of mutators can affect their persistence in metapopulations. Mutator and wild-type bacteria were competed for 250 generations in globally competing metapopulations, imposing conditions of high or low intra-deme relatedness. High relatedness favours cooperating groups, so we predicted that mutators should achieve lower equilibrium frequencies under high relatedness than under low relatedness. This was observed in our study. Consistent with our hypothesis, there was a positive correlation between mean mutator and cheat frequencies. We conclude that when dense population growth requires cooperation, and when cooperation is favoured (high relatedness), demes containing high frequencies of mutators are likely to be selected against because they also contain high frequencies of non-cooperating cheats. We have also identified conditions where mutator lineages are likely to dominate metapopulations; namely, when low relatedness reduces kin selection for cooperation. These results may help to explain clinical distributions of mutator bacteria.
منابع مشابه
Hypermutability Impedes Cooperation in Pathogenic Bacteria
When the supply of beneficial mutations limits adaptation, bacterial mutator alleles can reach high frequencies by hitchhiking with advantageous mutations. However, when populations are well adapted to their environments, the increased rate of deleterious mutations makes hypermutability selectively disadvantageous. Here, we consider a further cost of hypermutability: its potential to break down...
متن کاملWider Access to Genotypic Space Facilitates Loss of Cooperation in a Bacterial Mutator
Understanding the ecological, evolutionary and genetic factors that affect the expression of cooperative behaviours is a topic of wide biological significance. On a practical level, this field of research is useful because many pathogenic microbes rely on the cooperative production of public goods (such as nutrient scavenging molecules, toxins and biofilm matrix components) in order to exploit ...
متن کاملDispersal, environmental forcing, and parasites combine to affect metapopulation synehrony and stability.
Dispersal can have positive and negative effects on metapopulation stability and persistence. One prediction is that high levels of dispersal synchronize density fluctuations between subpopulations. However, little is still known about how biotic and abiotic factors combine to modify the effects of dispersal rate on synchrony and metapopulation dynamics. In a fully factorial experimental design...
متن کاملBacterial metapopulations in nanofabricated landscapes.
We have constructed a linear array of coupled, microscale patches of habitat. When bacteria are inoculated into this habitat landscape, a metapopulation emerges. Local bacterial populations in each patch coexist and weakly couple with neighbor populations in nearby patches. These spatially distributed bacterial populations interact through local extinction and colonization processes. We have fu...
متن کاملAccurate estimation of substitution rates with neighbor-dependent models in a phylogenetic context.
Most models and algorithms developed to perform statistical inference from DNA data make the assumption that substitution processes affecting distinct nucleotide sites are stochastically independent. This assumption ensures both mathematical and computational tractability but is in disagreement with observed data in many situations--one well-known example being CpG dinucleotide hypermutability ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Biological sciences
دوره 274 1615 شماره
صفحات -
تاریخ انتشار 2007